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ABSTRACT

Equations for tracing rays through an atmospheric medium of continuously

variable refractive index are obtained in spherical coordinates from Fermat's

principle by applying the Euler equation. By introducing canonical variables

they are reduced to a set of first order differential equations in noi,;nal form,

suitable for stepwise numerical integration. Altitude and azimuth angles are

introduced and a transformation is derived for determining the refraction errors,

including' lateral refraction, from the integrated results. The spherically

symmetrical case is considered in more detail and leads to an equation for the

error in altitude angle expressible as a quadrature over the radial coordinate.

A perturbation formula for obtaining the part of the refraction error due to

differences between an actual atmospheric profile and some standard atmospheric

profile is derived by taking the functional (or variational) derivative. The

resu-Iting integral over the radial coordinate has a particularly simple form
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altitude angle expressible as a quadrature over the radial coordinate. A

perturbation formula for obtaining the part of the refraction error due to
differences between an actual atmospheric profile and some standard atmospheric
prodile is derived by taking rhe functional (or variational) derivative. The
resulting integral over the radial coordinate has a particularly simple form.
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RAY TRACING IN SPHERICAL COORDINATES

According to Fermat's principle (i) (also referred to as the principle of

least time), the ray joining any two arbitrary points, P1 and P2 9 is determined

by the condition that its optical length

S a P2 n ds (1)

be stationary as compared with the optical lengths of arbitrary neighboring

curves joining P1 and P2. If the refractive index n is considered to be a giv-

en smooth continuous function of position and the location along the path is

given in terms of a parameter t, then an actual ray path must furnish an ex-

tremum

P2 n(r, G, )S(r, 0, r, e, ;)dt - 0 (2)

where spherical coordinates are indicated with

dss= S(r, e, 6, ;) =1 2 + r26 2 + r2 sin 2e$2  (3)

and where the dots indicate differentiation with respect to t. The partial

derivatives

aS . r(;2 + sin 2 e ;2) ;S

aS . r2 sin e cos e ;2 aS r2; (4)
ae S 7 S

as_ 0 *S r2 sin 2 0
ao a4 S

will be useful in evaluating the Euler equations in the derivation that follows.

Taking

f(r, , r, ,) n(r, e, O)S(r, 0, r, e, *) (5)

Yr
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in equation 2, the rays must lie along curves satisfying an Euler equation

for each coordinate

d -(Lf)aIf
dt 3P ar

d af) if

dL af af 0

or by making use of the relations given in equations 4 and 5

d ~ an~ r(62 + sin2 e 2) 0
dt~ S ar S

td(n 2 )S ie c ~ 2 S0 (7)

d- r2 sin 2 0 )S2' = 0
dt ~ S a

By taking the parameterization to be given in terms of arc length s along a ray

dt(8

the total differential system for the rays is simplified by eliminating the

radicals appearing in S above.

d (ne) - i-- nr(62 + sin2  ; 2) a:0

I nr f-Ln- nr2 sine cos ; 2 *0()

O~r2 sin2  _'O $)-i 0
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If a canonical system of variable is introduced where

pr nr

P= nr26 (10)

po =nr2 sin 2 e 0

the corresponding first order differential system is easily put in normal

form.

= . p2 + 2 +2n
r 9 sin

Cos 0 pt2 + n

PO =nr z sin s +  -_

a an (11)

= Pr
n

8 n r

nrz sin2 e

This system is suitable for numerical integration by many standard methods in-

cluding the Runge-Kutta method. The equations are not completely independent

but are inter-related by the implicit relationship from equations 3 and 8

;2 + r2 62 + r2 sin 2 0 ;2 = 1 (12)

which requires that the sum of the squares of the local direction cosines of

the tangent to the ray at any point be unity. This permits the integration
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to be initiated from a knowledge of position coordinates and two angles

sighted along a ray; for example altitude and azimuth angles. It can also

facilitate the change of independent variable from s to one of the coor-

dinates if desired; for example if it is desired to increment the radial

distance r in fixed predetermined amounts. In such a case, t16he six equa-
tions given by 11 are reduced to five. For a general integration with s

as the independent variable, the initial conditions consist of the coor-

dinates r, 0, * and the direction cosines a a e ~,, related to the con-

jugate variables, as follows.

a r Pr

e =w Opoana (13)

a, =r sino = Z nr sin ea
ds

The altitude angle a and azimuth angle A are given by

sin a a a
r

(14)

tan A - _(

where the ambiguity of sign must be rectified to conform with the spherical

coordinates, since various defining conventions are used for azimuth. By

making use of the tdentity

ar2 + o 2 + a2 1 (15)

it is easy to obtain the direction cosines in terms of altitude and azimuth.

ar = sin a

a= a cos a cos A (16)

a 2 ± cos a sin A
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ATMOSPHERIC REFRACTION INCLUDING LATERAL REFRACTION

Assuming the quantities 3.n-, 1, 2 are known functions of position, a* 3r ar ar
ray may now be traced up through the atmosphere by using the system of equa-

tions 11, for any starting location ro , eo , o and direction o aro, ~o .

Assuming the initial altitude angle is great enough that atmospheric ducting

and subsequent return of the ray does not occur, the ray eventually will

emerge from the atmosphere at some location rf, ef, of with local direction coor-

dinates arf' MGf' aof" In order to determine the amount of bending of the

ray, it is necessary to know the transformation of the final direction coor-

dinates back into the initial frame. This transformation will now be obtained.

For a general position vector R given in rectangular components but expressed

in spherical coordinates

R = i r sin e cos o + r sin E sin € + k r cos . (17)

A local reference frame of unit vectors r, 5, maybe defined by

r i sin 0 cos o + i sin 0 sin o - cos 0
Orj ar

0 = 3= i cos (D cos € + J cos e sin o + k sin o (18)

= LR /I RI -1 s + J Cos

If the unit direction vector of the ray

a + + a (19)r S

is expressed in terms of the initial frame, the components are found to depend

on the cosines of angles between the initial and current frame vectors

j_



S r o[(; ;O )r + ( 'o) + (; ';o) ]

+ o[ )e+ ( + ($ '@ )h ,] (20)+ JO[( '6olar+ (6'8o)0  + ($'ho)]

where the direction cosines involved are readily obtained from equations 18

applied at the initial and current positions. (The prime added to & is to

avoid confusion with the starting direction &0).

rro = sin 0 sin 00 cos (0-€o) + cos 0 cos 0 o

r.00 = sin 0 cos 0o cos (0-0O) cos 0 sin 00

r.¢o = sin 0 sin (o-€0

6 r = cos 0 sin o cos ( - ) - sin 0 cos e (21)

0.0 = cos 0 cos 00 cos ( €-o) + sin o sin 0o

= cos E sin (€ )

-r o =- sin 0 osin (4- €o)

0 0 0

0 ~0 0
;o "Cos (,- o)

By applying equations 20 and 21 to the emerging ray direction af the components

referred to the initial frame can be expressed in matrix form as given by equation

22.

Si of ~ ~Sin %* Cos($.. 0) Co of ~ CO . CS of sin 90 C091 409) - in fl COS ** -sin go Sin(o1-s*] rt
in ofS Cos go CSI(s*j$*) COS OfSon go i Coso CO 9 CDs(#j.*D) + sin of $to 00 -Cos go Sift(Bf-* Got%1 sin of Sil (qf o l Cos 0 f sin ($f-#, )  Cos (i[) 22)
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It was found that the transformation matrix could be factored as

EIfl [sin i
0 Cos 0 ] [: Co:: sin : 0 COS f sin :f 0]

0Of Co GCOo  -sin 00o  0 1 sin of -cos o f 0

in. of COS i Of COS €0 0

Lcos e: -sin of 4. f3

or alternatively in the form given by equation 24 as probably the most convenient

for computations.

sin 0 Cos (00 c 'o t q ) sin(o~~ 0o

rf000 f 0
[t M [C°o0i -sin 0 0 0

of1

Laf J0 0I Lsin~of- o )  cos(o f- 0)

cos of -sin Qf Oj LOi fj
Returning to equation 14, the vertical refraction correction is given by

a, - a' = arccos a' - arccos a (25)

f 0 rf ro

and the lateral refraction error by

Ai - A = arctan ( i -) --arctan (±.o) (26)oL f OLCo

=±arctan o o

Uo r 0 -11ON 'f

where the sign again depends on the convention used for azimuth
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THE SPHERICALLY SYMMETRICAL CASE

For the case where the refractive index depends only upon r, equations 9

become
d n nr( 2 + si 2)

d (n) - ar - sin ;2) = 0

d.-(n r26) - nr2 sin o cos E ;2 = 0 (27)
ds

nr2  sin 2 0 = C,

where an integral has been found for the last equation. The coordinate system

may be chosen so that initially Ls - 0. Then, C1 = 0 and vanishes identically
ds ds

0 = constant (28)

and the problem is reduced to two dimensions. Using the fact that = 0, the

second equation of 27 becomes integrable.

nr2 d = L)

Inserting the resultant value for - into the first equation of 27 (together with
ds

= 0) yields the following relationship.

-(n -r) n C22- 0 (30)
ds ds ar nr3

Multiplying by n and using the relationship d dr d
ds ds dr'

ndrd ndn - = 0 (31)d n ds r r

and integrating yields

(ndr ) 2  r-n2  = C3  (32)
dsr 2

8I
Si



If L2 is replaced by (nr d- 2 from equation 29, it is found that

dr2 + (rds)2_ 11 = C3 . (33)n (d-s -ds'

The quantity in square brackets must vanish because arc length s is defined by

ds = -dr2 + r2 do2 and hence C3 = 0. It then also follows that equations 29

and 30 (in r and ®) are not independent. As a matter of convenience, equation

29 will be used and the geometrical relations between dr, ds and do qill be

exploited.

As demonstrated in Figure 1, a star is observed at the apparent position

Algiven by angle :o.

Figure 1 Geometrical Parameters for the Atmospheric Ray Path
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If no atmosphere were present, the actual position A2 would coincide with

Al. For a ray travelling in the reverse direction and emanating at the sur-

face at angle Yo in a medium with variable refractive index, the ray path is

curved and its inclination T at r is given by

dnr(r ) - nr cos T = C (34)

ds

from equation 29 where the constant is determined from the initial values of

n, r and T.

C = nr o cos o (35)

After passing through the region of variable index, the ray will emerge at rf9

of in the direction 'f toward A2 . By the optical Principle of Reversibility,

an object at A2 would be observed to have elevation To$ whereas, if the refrac-

tive index were constant (atmosphere removed) it would have its true elevation

angle a. As layers of variable refractive index are added in the reversed ray

system, a would change and so in this inbedded sense can be regarded as a func-

tion of r.

From Figure 1,

a z'Y -T (36)

or

da _ d' do (37)
dr dr dr

and a may be determined by integrating equation 37. By rewriting equation 34

in the form

nr2 dr do =C (38)
nr2

1 10
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ddF and. using the fact that sin T/ - U, an expression for de is found

dOCr
sin T C (39)

si ' dr nr2

By differentiating equation 34 in the form

cos = c_ (40)
nr

an expression containing is obtained.
dr

sin V d'. C + C dn (41)
dr nr2  n2r dr

Combining equations 39 and 41

sin = - dn (42)
dr -d2 r

and using the fact that

sin T 1 () (43)
dar

an expression for dr is readily found.

dn r dn

da __ __ (44)
dr nr /(2Cnr (,)2 -

If this expression is integrated by parts from r0 to rf, the value for the

observational error is found

frf I n

2 -C dr dr (45)

la~~~ ~ =  f-a r V(T nr 2ro C d

a= arcsec (fl.) - arcsec ( jrf f rf dr1(46)r sec

f nr
110



where ao Yo, r 0 , no, and af, rf, nf, are initial and final values and where C

is given by equation 35.

V fdr (47)

a= arcsec (nfrf sec T 0o) - o (
nor., rV(nn ec 'o) 2 - 1

ro

For determination of 6a by numerical integration, equation 45 should be prefer-

able to equation 47 by virtue of its simplicity and certainly a need to carry

fewer significant figures. It can be easily evaluated with the trapazoidal rule,

using a linear interpolation for n For higher degree approximations, standard

spline methods are suggested. Although it can be integrated b. quadrature form-

ulae (e.g. Newton-Cotes), equation 47 appears to offer no distinct advantage.

PERTURSATIO! OF THE SOLUTION

The refractive index function n(r) is given a variation em(r) and

the new error in altitude angle is obtained from equation 45

r J

J I dr dr (48)

ro C -

where

'(r) = n(r) + cm(r) (49)

and

dLW n + ()

dr dr dr

12



By making use of equation 50 and the following Taylor expansion in ,

r r r () r)2

'= ' - - 1 + 0(W)  PI

the expression given below is obtained for the perturbed (or varied) integral

rf r dn rf -r rmr) r r
r C dr dr+EC _C C I  dn +  d dr(

n 2 . 3/2 dr n (d dr

r o
o

+ O(C2)

In equation 52, the full variation is obtained for E = 1 and the conditions

that the first order term give a good representation of the corresponding var-

iation in J are

cm(r) < < n(r)

dm < <d n (53)

dr dr

where E has been carried in equation 52 mainly for purposes of identification.

By differentiation and a considerable amount of algebraic manipulation,

the following identity may be obtained

13



(5

and this is useful in further simplifying the form of the integral.

r dm mr. m

rf r dn rf_( )

Cd d T
J =dr + [(a

( 55

2 -) , r0( ]3/
_C ~ ~ n I Ecr nr\2C C

r-C-) V (j r 2 1 1r

By assuming the value of m to vanish at the endpoints,

m(r o) = m(rf) = 0 (56)

the quantity bracketed in equation 55 will also vanish. For the upper end-

point, this is a reasonable assumption since the refractive index should

assume the value for vacuum and variation or perturbatioN, is not reasonable.

For the lower endpoint, it is necessary on practical grounds, since any var-iation of refractive index will disturb the value of C (initial condition)

used throughout the entire range of integration.

~14
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The first term of equation 55 is the unperturbed error. The integral

in the second term is known as the variational or functional derivative of

J of first order. Taking c = 1 and ignoring higher order terms yields the

first order or linear perturbation of J.

rf

j dr (57

It can be used for approximately determining refraction errors in the altitude angle

due to differences between the actual refractive index profije and the profile of some

standard atmospheric model.
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